
Evolution of Version
Control in Open Source

Lessons learned along the path to distributed version control

Chris Aniszczyk (Red Hat)
Principal Software Engineer
zx@redhat.com
http://aniszczyk.org

mailto:zx@redhat.com

About Me

I've been using and hacking open source for ~12 years
 - contribute{d} to Gentoo Linux, Fedora Linux, Eclipse

Eclipse Board of Directors, Committer Representative

Member in the Eclipse {Architecture,Planning} Council

I like to run! (just finished Chicago marathon in 3:20)

Co-author of RCP Book (www.eclipsercp.org)

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

http://www.eclipsercp.org/

Picture 5

History of Version Control (VCS)
The Rise of Distributed Version Control (DVCS)
Lessons Learned at Eclipse moving to a DVCS
Conclusion
Q&A

Agenda

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Version Control

Version Control Systems manage change

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

“The only constant is change” (Heraclitus)

Why Version Control?

VCS became essential to software development because:

They allow teams to collaborate
They manage change and allow for inspection
They track ownership
They track evolution of changes
They allow for branching
They allow for continuous integration

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Version Control: The Ancients

1972 – Source Code Control System (SCCS)
 Born out of Bell Labs, based on interleaved deltas
 No open source implementations as far as I know

1982 – Revision Control System (RCS)
 Released as an alternative to SCCS
 Operates on single files
 Open source implementation hosted at GNU

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Version Control: The Centralized

One centralized server with the revision information

Clients checkout a working copy locally

Most operations happen on the server

Linear revision history

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Version Control: The Centralized

1990 – Concurrent Versions System (CVS)
 Initially released as some scripts on top of RCS
 Made branching possible for most people
 Revisions by commits are per file :(
 No atomic commit :(
 Not really maintained anymore...

2000 – Subversion (SVN)
 Released as an improvement to CVS
 Atomic commits via transactions
 Open source implementation hosted at Apache

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Picture 5

“Hey, get back to work!”

 … “My code's merging” - remember those days you
spent merging in changes in CVS/SVN?

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Version Control: The Distributed

Every client has a copy of the full repository locally

All repository operations are local (except sharing)

Intelligent network operations when sharing content

A very non linear revision history

Large online communities to share changes

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Version Control: The Distributed

2001 – GNU arch
 First open source DVCS
 Deprecated; not maintained anymore

--- In 2005, Bitkeeper was no longer open source ---

2005 – Git
 Created as the SCM for the Linux kernel by Linus

2005 – Mercurial (Hg)
 Cross-platform DVCS

2007 – Bazaar (BZR)
 Sponsored by Canonical

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Picture 5

History of Version Control (VCS)
The Rise of Distributed Version Control (DVCS)
 - How does a DVCS work?
 - The benefits of a DVCS
Lessons Learned at Eclipse moving to a DVCS
Conclusion
Q&A

Agenda

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

How does it work?

A DVCS generally operates at the level of a changeset

Logically, a repository is made up from an initial empty
state, followed by many changesets

Changesets are identified by a SHA-1 hash value

e.g., 0878a8189e6a3ae1ded86d9e9c7cbe3f

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

It's all about the changesets

previous: 48b2179994d494485b79504e8b5a6b23ce24a026
--- a/README.txt
+++ b/README.txt
@@ -1 +1 @@
-SVN is great
+Git is great

previous: 6ff60e964245816221414736d7e5fe6972246ead
--- a/README.txt
+++ b/README.txt
@@ -1 +1 @@
-Git is great
+SVN is great

Changesets contain pointers to the previous changeset

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Branches

The current version of your repository is simply a pointer
to the end of the tree

The default "trunk" in Git is called "master"

The tip of the current branch is called "HEAD"

Any branch can be referred to by its hash id

Creating branches in a DVCS is fast, you simply point to
a different element in the tree on disk already

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Merging

DVCS are all about merging

Merges are just the weaving together of two (or more)
local branches into one

However, unlike CVCS, you don't have to specify
anything about where you're merging from and to; the
trees automatically know what their split point was in the
past, and can work it out from there.

Merging is much easier in a DVCS like Git

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Pulling and Pushing

We've not talked about the distributed nature of DVCS

Changes flow between repositories by push and pull

Since a DVCS tree is merely a pointer to a branch...

There's three cases to consider for comparing two trees:
• Your tip is an ancestor of my tip
• My tip is an ancestor of your tip
• Neither of our tips are direct ancestors; however, we

both share a common ancestor

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Cloning and Remotes (git)
git clone git://egit.eclipse.org/egit.git

Where you can push or pull to is configured on a per
(local) repository basis

git remote add github http://github.com/zx/myegit.git

origin is the default remote; you can have many remotes

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Software Trends and Revolution

Most major open source projects use some form of DVCS

Git, Hg, Bazaar

Linux
MySQL
OpenJDK
Android
JQuery
Gnome
Fedora
Bugzilla and so on...

But why?

Using Git in Eclipse | © 2010 by C. Aniszczyk and M. Sohn

Benefits of Distributed Version Control

Can collaborate without a central authority

Disconnected operations

Easy branching and merging

Define your own workflow

Powerful community sharing tools

Easier path to contributor to committer

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Collaboration

Developers can easily collaborate directly without
needing a central authority or dealing with server
administration costs

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Disconnected operations rule!

Developers can still be productive and not worry
about a central server going down... remember the
days of complaining that CVS was down and you
couldn't work?

Also, there's a lighter server
load for administrators!

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Branches everywhere

Creating and destroying branches are simple
operations so it's easy to experiment
with new ideas

Very easy to isolate changes

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Define your own workflow

Define your own workflow to meet your team needs.
Different workflows can be adopted as your team
grows without changing VCS toolsets!

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

DVCS and Building Community

Developers can easily discover and fork projects. On
top of that, it's simple for developers to share their
changes

“Distributed version control is all about empowering
your community, and the people who might join your
community” - Mark Shuttleworth

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Picture 5

History of Version Control (VCS)
The Rise of Distributed Version Control (DVCS)
Lessons Learned at Eclipse moving to a DVCS
 - Version control at Eclipse
 - Code review at Eclipse
 - Challenges in moving to a DVCS
Conclusion
Q&A

Agenda

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Version Control at Eclipse

Eclipse defined a roadmap to move to Git in 2009
CVS is deprecated; SVN will be deprecated in the future

EGit is an Eclipse Team provider for Git
 http://www.eclipse.org/egit/

JGit is a lightweight Java library implementing Git
 http://www.eclipse.org/jgit/

The goal is to build an Eclipse community around Git

So why did Eclipse.org choose Git?

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

http://www.eclipse.org/egit/
http://www.eclipse.org/jgit/

Picture 5

#1: Git-related projects at Eclipse.org

 … both the core Git library (JGit) and tooling (EGit)
are actively developed at Eclipse.org by a diverse set
of committers and contributors with a common goal

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

History of JGit and EGit
2005 Linus Torvalds starts Git

2006 Shawn Pearce starts JGit

2009 Eclipse decides roadmap for Git migration
 JGit/EGit move to eclipse.org
 SAP joins JGit/EGit

3/2010 Released 0.7 (first release at Eclipse)
 Diff/Merge Algorithms, Automatic IP Logs

6/2010 Released 0.8 (Helios)
 Usability Improvements, Git Repositories View, Tagging

9/2010 Released 0.9 (Helios SR1)
 Merge, Synchronize View, .gitignore

Planned: 12/2010 0.10 (Helios SR2) 3/2011 0.11 6/2011 1.0 (Indigo)

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Picture 5

#2: Git is fast

 … Git is fast and scales well

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

*whyisgitbetterthanx.com

Picture 5

#3: Git is mature and popular

 … Git is widely used and is the most popular
distributed version control system

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Picture 5

#4: Git community tools

 … the Eclipse community is interested in taking
advantage of such Git tools like Gerrit Code Review
(used by the Android community) and GitHub

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Roles at Eclipse and Code Review
Committer

Formally elected
Can commit own changes without review

Contributor
Small changes

reviewed by committers
Bigger changes

also formal IP review by legal team
in separate protected Bugzilla (IPZilla)

Review Tool
patches attached to bug in Bugzilla
comments in Bugzilla

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Code Review via Bugzilla

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Eclipse – Review Process
Contributors

• create patch using CVS, SVN, Git (since 2009)
• attach patch to bug in Bugzilla

Committers
• do code and IP review
• comment, vote in Bugzilla
• create CQ for changes needing IP review
• commit accepted changes

IP Team
• does IP review bigger changes from contributors

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Eclipse – Review Process
Review not done for all changes

Each Eclipse.org project does it differently

Review tedious for contributors
(and also for committers mentoring contributors)

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Gerrit Code Review

Gerrit is a Code Review system based on JGit
 http://code.google.com/p/gerrit/

 Also serves as a git server
 adding access control and workflow

 Used by
• Android https://review.source.android.com/
• JGit, EGit http://egit.eclipse.org/r/
• Google, SAP, …

 Eclipse wants to use it …

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

http://code.google.com/p/gerrit/
https://review.source.android.com/
https://review.source.android.com/
https://review.source.android.com/
http://egit.eclipse.org/r/
http://egit.eclipse.org/r/
http://egit.eclipse.org/r/

History: Google and code review tools

Mondrian (Guido van Rossum)
• based on Perforce, Google infrastructure
• Google proprietary

Rietvield (Guido van Rossum)
• based on Subversion
• Open Source hosted on GoogleApp Engine

Gerrit (Shawn Pearce)
• started as a fork of Rietvield
• based on JGit and GWT
• Open Source (Android)
• Apache 2 license

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

http://video.google.com/videoplay?docid=-8502904076440714866
http://code.google.com/p/rietveld/
http://code.google.com/p/gerrit

One Branch One Feature

Master	
 branch	
 contains	
 only	
 reviewed	
 and	
 approved	
 changes
• master	
 moves	
 from	
 good	
 to	
 be7er	
 state	
 a)er	
 each	

(approved)	
 change

Each	
 feature	
 branch	
 is	
 based	
 on	
 master	
 branch
• stable	
 star6ng	
 point

A	
 change	
 can	
 really	
 be	
 abandoned	
 because
• no	
 other	
 approved	
 change	
 can	
 depend	
 on	
 a	
 not	
 yet	

approved	
 change
• Gerrit	
 will	
 automa6cally	
 reject	
 a	
 successor	
 change	
 of	
 an	

abandoned	
 change

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Gerrit – Lifecycle of a Change

a

master
topic

1

• create local topic
branch
• commit change
• push it for review
• do review
• automated
verification

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Gerrit – Lifecycle of a Change

c

b

a1

2

mastertopic

3

a

master
topic

1

• create local topic
branch
• commit change
• push it for review
• do review
• automated
verification

• refine based on
review
• push new patchsets
until review votes ok

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Gerrit – Lifecycle of a Change

c

b

a1

2

mastertopic

3

a

master
topic

1

• create local topic
branch
• commit change
• push it for review
• do review
• automated
verification

• refine based on
review
• push new patchsets
until review votes ok

c

b

a1

2

master

topic

3

d

• Submit may lead to
server-side merge
• or merge / rebase before
push

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Gerrit Workflow

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Gerrit

http://egit.eclipse.org/r/ - change,825Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

http://egit.eclipse.org/r/

Picture 5

Convincing management and peers was tough
 - At first, everyone is resistant to change

The learning curve of DVCS systems is high
 - Initially, the Eclipse tooling was “alpha”
 - People refuse to drop to the CLI

Legacy is a pain in the ass!
 - 200+ projects at Eclipse used CVS/SVN
 - The existing VCS tooling was high quality

Eclipse.org: Challenges moving to a DVCS

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Picture 5

No free lunch!
… trust me, the only way to learn DVCS is to start using
it... there is a learning curve, you need to rewire your
brain!

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Git Resources

http://git-scm.com/documentation is your friend

Watch Linus' talk at Google
http://www.youtube.com/watch?v=4XpnKHJAok8

Read the Pro Git book - http://progit.org/book/

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

http://dev.eclipse.org/mailman/listinfo/jgit-dev
http://dev.eclipse.org/mailman/listinfo/jgit-dev
http://git-scm.com/documentation

Picture 5

History of Version Control (VCS)
The Rise of Distributed Version Control (DVCS)
Lessons Learned at Eclipse moving to a DVCS
Conclusion
Q&A

Agenda

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Conclusion

The future of version control is distributed!

Moving to a DVCS takes time

Gerrit enables a nice code review workflow

Open source has embraced the way of DVCS

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

Picture 5

Q&A

Evolution of Version Control in Open Source | © 2010 by Chris Aniszczyk

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Eclipse - Roles
	Code Review in Bugzilla
	Eclipse – Review Process
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Gerrit
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

