
The Maven-related tooling youʼll be using in your
infrastructure for years to come

Maven 3.x: The Evolution of
Enterprise Java Build Infrastructures

Jason van Zyl
http://twitter.com/jvanzyl

http://twitter.com/jvanzyl
http://twitter.com/jvanzyl

Agenda & Session Goals
What weʼre going to talk about and accomplish this session

Proviso 7

Agent

Agent

Agent

6

M2Eclipse 2 Hudson3

1

Nexus Maven

4

5

Git

Maven Central++Maven Central

1. Developer requests binary
dependencies from Nexus

2. Developer checks in source code 3. Hudson checks out the source code

4. Hudson instructs Maven to perform
the automated build

5. Maven deploys build
artifacts to Nexus6a. Proviso requests

updates to runtime
components
from Nexus 6b. Nexus sends component

updates to Proviso

7. Proviso provisions components
and configurations into the
target runtime

To understand how Maven 3.x and
its related tools & frameworks are
going to help us get to that ideal

delivery infrastructure

Agenda & Session Goals
What weʼre going to talk about and accomplish this session

• Maven 3.0-final has been released. Yay!
• Sonatype is planning features for what we would like to see in Maven 3.1
• M2Eclipse 1.0 will be released after two 4-6 week iterations or so.

• Itʼs getting better rapidly because most of Sonatypeʼs Eclipse team is working on it.
• We are moving M2Eclipse to the Eclipse Foundation
• Weʼve started checking in the code at the Eclipse Foundation

• Tycho passed its project creation review at the Eclipse Foundation, has been
provisioned, and will soon begin the parallel IP process

• MavenShell 1.0 will be released December 1st
• PolyglotMaven 1.0 will be released January 1st
• PDE replacement using Tycho hopefully demo-ready in a couple weeks
• We hope to submit our JSR-330 and REST work to the Hudson project soon &

possibly working with Oracle to implement Maven 3.x support

Updates on Maven, M2Eclipse & Tycho ...
Whatʼs going on at Sonatype & in Maven land?

0

225,000

450,000

675,000

900,000

Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul! Aug

742,882
723,822

789,814

832,749

787,939

735,809
712,863

698,823
667,708

646,600

588,141
557,734

514,589

Maven Central Unique IPs / Month [Aug2009 to Aug2010]

2008 Total Unique IPs: 1,836,709
2009 Total Unique IPs: 3,978,964
2010 Total Unique IPs: 6,024,701(end of Aug)

Maven is the de facto component
distribution infrastructure for Java projects

Maven Central is the de facto
store house of all Open Source

Java components: ~300M hits/month

non-Maven < 0.5%
RM < 7%

• POM interoperability
• Maven 3.1 Plugin API (SM --> AM)

• JSR-330
• Java5 annotations
• Tight integration with M2Eclipse
• Build avoidance

• Mixins (SM --> AM)
• Versionless parents in child POMs (SM --> AM)
• Concurrent-access local repository implementation (SM)

• Async HTTP Client connector for Aether (SM)
• Async HTTP Client Wagon (SM)

• Dynamic Extension API (SM)

• Eventing API (SM)

Maven 3.1
Whatʼs going on for Maven 3.1

Sonatypeʼs Maven Plan
Rapidly innovate while being reconciled to the Apache Way

Apache Maven Sonatype Maven
@ Github

MavenShell @ Github M2Eclipse
@ Eclipse

MavenIDE @ Github

Apache Maven
@ Github

F1 F2 F3 Polyglot Maven
@ Github

Tycho @ Eclipse

• JSR-330-based plugins

• REST support using Apache Wink

• Global configuration management

• Apache Shiro integration for security management and SSO
• Slave tool provisioning with Proviso (based on Eclipse p2)
• Integration with M2Eclipse (Sonatype Professional)

• Maven 3.x integration (in progress)
• Long-lived workflow using Drools Flow (research)

A Maven-focused Hudson
Sonatype is doing a lot of work with Hudson

The Idea Development Infrastructure
Now letʼs talk about some of the underlying technologies

Proviso 7

Agent

Agent

Agent

6

M2Eclipse 2 Hudson3

1

Nexus Maven

4

5

Git

Maven Central++Maven Central

1. Developer requests binary
dependencies from Nexus

2. Developer checks in source code 3. Hudson checks out the source code

4. Hudson instructs Maven to perform
the automated build

5. Maven deploys build
artifacts to Nexus6a. Proviso requests

updates to runtime
components
from Nexus 6b. Nexus sends component

updates to Proviso

7. Proviso provisions components
and configurations into the
target runtime

• Shared component & plugin model
• Shared transport system
• Shared repository API
• Enriched component metadata
• Enhanced IDE connectivity to the infrastructure
• Provisioning (I think this might have to wait until the next webinar)

The ideal Maven-focused delivery infrastructure
What does that look like?

JSR-330

Shared component model
For Sonatype this means JSR-330

M2Eclipse Hudson

Nexus Maven

Git

Proviso
Agent

Agent

Agent

• Requirements
• Absolutely no code changes for any Maven, Nexus, M2Eclipse component
• Must support Plexusʼ classpath/resource scanning
• Must support Plexusʼ dynamic component assembly based on discovered metadata
• Must support Plexusʼ configuration & converter mechanism
• When we need changes made to the runtime container, we need those changes to

be timely
• Support for arbitrary lifecycles
• We need the container to be wed with OSGi -- for us the answer is Peaberry
• Component graph proxy support: for components and configuration
• Dynamic language support

Moving from Plexus to Guice & JSR-330
Making it all work with Guice

Implications of using JSR-330
We bring some sanity to tooling
• Writing plugins in various ways for tools like Maven, Nexus, Hudson, Sonar & Eclipse

has a great deal of mental overhead. This burden will be removed.
• The implications for development, testing and delivery are huge. They cannot be

understated
• Common development models: how to create JSR-330-based plugins, better

component reuse, a common understand of infrastructure tooling
• Common testing frameworks for JSR-330 e.g Sonatypeʼs REST/UI toolkit
• Common provisioning models

Sisu Maven Plugin Example
Using the same component model

@Goal("webxml")
@Phase(GENERATE_RESOURCES)
@RequiresProject
@Threadsafe
public class GenerateWebXml extends SisuMavenMojo {
 @Inject Logger logger;

 @Inject
 private Component component;

 @Inject @Named("${project}")
 private MavenProject project;

 @Inject @Named("${outputDirectory}") @DefaultsTo("${project.build.directory}")
 private File outputDirectory;

 @Inject
 private List<WebXmlAugmenter> webXmlAugmenters;

 public void execute() throws Exception {
 component.generate(project, webXmlAugmenters, outputDirectory);
 }
}

Sisu Hudson Plugin Example
Using the same component model

@Named
@Singleton
public class RestPlugin
 extends Plugin
{
 @Inject
 private Logger logger;

 private transient List<ApiProvider> providers;

 private boolean enabled = true;

 @Inject
 public RestPlugin(final List<ApiProvider> providers) {
 assert providers != null;
 this.providers = providers;

 logger.debug("Providers:");
 for (ApiProvider provider : providers) {
 logger.debug(" {}", provider);
 }
 }
}

Sisu Nexus Plugin Example
Using the same component model

@Named
@Singleton
@Path(CapabilitiesResource.RESOURCE_URI)
@Produces({ "application/xml", "application/json" })
@Consumes({ "application/xml", "application/json" })
public class CapabilitiesResource
 implements Resource {
 public static final String RESOURCE_URI = "/capabilities";

 private final CapabilityConfiguration capabilitiesConfiguration;

 private final CapabilityDescriptorRegistry capabilityDescriptorRegistry;

 @Inject
 public CapabilitiesResource(CapabilityConfiguration capabilitiesConfiguration,
 CapabilityDescriptorRegistry capabilityDescriptorRegistry)
 {
 this.capabilitiesConfiguration = capabilitiesConfiguration;
 this.capabilityDescriptorRegistry = capabilityDescriptorRegistry;

 ...
 }
}

Shared transport system
For Sonatype this means the Async HTTP Client

M2Eclipse Hudson

Nexus Maven

Git

Proviso
Agent

Agent

Agent
Async HTTP Client

Shared repository API
For Sonatype this means our new Aether library

M2Eclipse Hudson

Nexus Maven

Git

Proviso
Agent

Agent

AgentAether

1

5

7

6

• The artifact resolution code has always been relatively decoupled, but Aether is a
completely stand-alone library and has no dependencies on Maven

• SSL support
• DAV support
• Proxies
• NTLM(v2)
• Transport

• Weʼre using the Async HTTP client being developed by Jean-francois Arcand at
Sonatype

• Hoping to collaborate on research with Daniel Le Berre to determine if p2 can be used
to do Maven resolution. Ultimately we would like to merge our code into p2 and just
use p2

Aether
Overhauled Repository Artifact Resolution API

Aether Resolution Example
Easy to embed and simply use as a library

 public void resolve(String remoteRepository, File localRepository)
 throws DependencyCollectionException, ArtifactResolutionException
 {
 Aether aether = new Aether(repoRepository, localRepository);

 AetherResult result = aether.resolve("com.mycompany.app", "super-app", "1.0");

 // Get the root of the resolved tree of artifacts
 //
 DependencyNode root = result.getRoot();

 // Get the list of files for the artifacts resolved
 //
 List<File> artifacts = result.getResolvedFiles();

 // Get the classpath of the artifacts resolved
 //
 String classpath = result.getResolvedClassPath();
 }

Aether Install & Deploy Example
Easy to embed and simply use as a library

 public void installAndDeploy(String remoteRepository, File localRepository
 String deployRepository)
 throws InstallationException, DeploymentException
 {
 Aether aether = new Aether(remoteRepository, localRepository);

 Artifact artifact =

 new DefaultArtifact("com.mycompany", "super-core", "jar", "1.0");
 artifact = artifact.setFile(new File("jar-from-whatever-process.jar"));
 Artifact pom = new SubArtifact(artifact, null, "pom");
 pom = pom.setFile(new File("pom-from-whatever-process.xml"));

 // Install into the local repository specified
 //
 aether.install(artifact, pom);

 // Deploy to the specified deploy reposistory
 //
 aether.deploy(artifact, pom, deployRepository);
 }

• First we need to clean up the way artifacts get into Maven Central

Enriched component metadata
What is that and how do we get it?

• Bullet
• Bullet

• Bullet

Maven Central Quality
Sonatype is working hard to clean up Maven Central

https://docs.sonatype.org/display/Repository/Home

https://docs.sonatype.org/display/Repository/Home
https://docs.sonatype.org/display/Repository/Home

• Project relationships
• In order to do everything we want below we need to build up a comprehensive

graph of all the relationships between projects in Maven Central
• Project statistics

• Project really want to know how their projects are being consumed on Maven
Central

• Quality metadata
• Test coverage
• Information provided by many of the existing tools like PMD, Checkstyle, Findbugs

• Provenance metadata
• License information
• IP information

• Security metadata
• Tracking vulnerabilities and determining how it affects your organization

Enriched component metadata
What is that and how do we get it?

• Onboarding & updating
• Getting developers up and running quickly & helping developers update

environments and transition to new projects
• Connectivity to

• Maven
• SCM
• Hudson
• Nexus
• Proviso

• Connectivity to enhanced Maven Central metadata

Enhanced IDE connectivity to the infrastructure
The IDE is the cockpit for a developer and be easy to get into

Developer Onboarding & Updating

MSE Codebase

MSE Lineup

Eclipse Distribution

Eclipse Plugins/
Components

Source Tree
SCM Information

Project Information

Source Roots

Eclipse Preferences

Codebase Description/Icon

(one or more)

Publish Codebase

Publish Lineup

Request Codebase
Materialize/Update

Nexus: Access to Archetypes

Nexus: Access to Artifacts

Nexus: Access to Plugins

Idiom: Access Wikis

Hudson: Access to Build Jobs

Hudson: Access to Build Job Details

Hudson: Direct Navigation to Test Failures

Questions & Answers

